Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A high-density SNP Map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12.

Identifieur interne : 000606 ( Main/Exploration ); précédent : 000605; suivant : 000607

A high-density SNP Map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12.

Auteurs : Zahirul I. Talukder [États-Unis] ; Li Gong [États-Unis] ; Brent S. Hulke [États-Unis] ; Venkatramana Pegadaraju [États-Unis] ; Qijian Song [États-Unis] ; Quentin Schultz [États-Unis] ; Lili Qi [États-Unis]

Source :

RBID : pubmed:25014030

Descripteurs français

English descriptors

Abstract

A high-resolution genetic map of sunflower was constructed by integrating SNP data from three F2 mapping populations (HA 89/RHA 464, B-line/RHA 464, and CR 29/RHA 468). The consensus map spanned a total length of 1443.84 cM, and consisted of 5,019 SNP markers derived from RAD tag sequencing and 118 publicly available SSR markers distributed in 17 linkage groups, corresponding to the haploid chromosome number of sunflower. The maximum interval between markers in the consensus map is 12.37 cM and the average distance is 0.28 cM between adjacent markers. Despite a few short-distance inversions in marker order, the consensus map showed high levels of collinearity among individual maps with an average Spearman's rank correlation coefficient of 0.972 across the genome. The order of the SSR markers on the consensus map was also in agreement with the order of the individual map and with previously published sunflower maps. Three individual and one consensus maps revealed the uneven distribution of markers across the genome. Additionally, we performed fine mapping and marker validation of the rust resistance gene R12, providing closely linked SNP markers for marker-assisted selection of this gene in sunflower breeding programs. This high resolution consensus map will serve as a valuable tool to the sunflower community for studying marker-trait association of important agronomic traits, marker assisted breeding, map-based gene cloning, and comparative mapping.

DOI: 10.1371/journal.pone.0098628
PubMed: 25014030
PubMed Central: PMC4094432


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A high-density SNP Map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12.</title>
<author>
<name sortKey="Talukder, Zahirul I" sort="Talukder, Zahirul I" uniqKey="Talukder Z" first="Zahirul I" last="Talukder">Zahirul I. Talukder</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, North Dakota State University, Fargo, North Dakota</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gong, Li" sort="Gong, Li" uniqKey="Gong L" first="Li" last="Gong">Li Gong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, North Dakota State University, Fargo, North Dakota</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hulke, Brent S" sort="Hulke, Brent S" uniqKey="Hulke B" first="Brent S" last="Hulke">Brent S. Hulke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Northern Crop Science Laboratory, USDA- Agricultural Research Service, Fargo, North Dakota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Northern Crop Science Laboratory, USDA- Agricultural Research Service, Fargo, North Dakota</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pegadaraju, Venkatramana" sort="Pegadaraju, Venkatramana" uniqKey="Pegadaraju V" first="Venkatramana" last="Pegadaraju">Venkatramana Pegadaraju</name>
<affiliation wicri:level="2">
<nlm:affiliation>BioDiagnostics Inc., River Falls, Wisconsin, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BioDiagnostics Inc., River Falls, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Song, Qijian" sort="Song, Qijian" uniqKey="Song Q" first="Qijian" last="Song">Qijian Song</name>
<affiliation wicri:level="2">
<nlm:affiliation>Soybean Genomics and Improvement Lab, USDA- Agricultural Research Service, Beltsville, Maryland, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soybean Genomics and Improvement Lab, USDA- Agricultural Research Service, Beltsville, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schultz, Quentin" sort="Schultz, Quentin" uniqKey="Schultz Q" first="Quentin" last="Schultz">Quentin Schultz</name>
<affiliation wicri:level="2">
<nlm:affiliation>BioDiagnostics Inc., River Falls, Wisconsin, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BioDiagnostics Inc., River Falls, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qi, Lili" sort="Qi, Lili" uniqKey="Qi L" first="Lili" last="Qi">Lili Qi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Northern Crop Science Laboratory, USDA- Agricultural Research Service, Fargo, North Dakota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Northern Crop Science Laboratory, USDA- Agricultural Research Service, Fargo, North Dakota</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25014030</idno>
<idno type="pmid">25014030</idno>
<idno type="doi">10.1371/journal.pone.0098628</idno>
<idno type="pmc">PMC4094432</idno>
<idno type="wicri:Area/Main/Corpus">000561</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000561</idno>
<idno type="wicri:Area/Main/Curation">000561</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000561</idno>
<idno type="wicri:Area/Main/Exploration">000561</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A high-density SNP Map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12.</title>
<author>
<name sortKey="Talukder, Zahirul I" sort="Talukder, Zahirul I" uniqKey="Talukder Z" first="Zahirul I" last="Talukder">Zahirul I. Talukder</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, North Dakota State University, Fargo, North Dakota</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gong, Li" sort="Gong, Li" uniqKey="Gong L" first="Li" last="Gong">Li Gong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, North Dakota State University, Fargo, North Dakota</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hulke, Brent S" sort="Hulke, Brent S" uniqKey="Hulke B" first="Brent S" last="Hulke">Brent S. Hulke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Northern Crop Science Laboratory, USDA- Agricultural Research Service, Fargo, North Dakota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Northern Crop Science Laboratory, USDA- Agricultural Research Service, Fargo, North Dakota</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pegadaraju, Venkatramana" sort="Pegadaraju, Venkatramana" uniqKey="Pegadaraju V" first="Venkatramana" last="Pegadaraju">Venkatramana Pegadaraju</name>
<affiliation wicri:level="2">
<nlm:affiliation>BioDiagnostics Inc., River Falls, Wisconsin, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BioDiagnostics Inc., River Falls, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Song, Qijian" sort="Song, Qijian" uniqKey="Song Q" first="Qijian" last="Song">Qijian Song</name>
<affiliation wicri:level="2">
<nlm:affiliation>Soybean Genomics and Improvement Lab, USDA- Agricultural Research Service, Beltsville, Maryland, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soybean Genomics and Improvement Lab, USDA- Agricultural Research Service, Beltsville, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schultz, Quentin" sort="Schultz, Quentin" uniqKey="Schultz Q" first="Quentin" last="Schultz">Quentin Schultz</name>
<affiliation wicri:level="2">
<nlm:affiliation>BioDiagnostics Inc., River Falls, Wisconsin, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BioDiagnostics Inc., River Falls, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qi, Lili" sort="Qi, Lili" uniqKey="Qi L" first="Lili" last="Qi">Lili Qi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Northern Crop Science Laboratory, USDA- Agricultural Research Service, Fargo, North Dakota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Northern Crop Science Laboratory, USDA- Agricultural Research Service, Fargo, North Dakota</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (pathogenicity)</term>
<term>Basidiomycota (physiology)</term>
<term>Breeding (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Genetic Linkage (MeSH)</term>
<term>Genetic Markers (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Helianthus (genetics)</term>
<term>Helianthus (immunology)</term>
<term>Helianthus (microbiology)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Immunity (genetics)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Quantitative Trait Loci (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (pathogénicité)</term>
<term>Basidiomycota (physiologie)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Helianthus (génétique)</term>
<term>Helianthus (immunologie)</term>
<term>Helianthus (microbiologie)</term>
<term>Immunité des plantes (génétique)</term>
<term>Liaison génétique (MeSH)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Marqueurs génétiques (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Sélection (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Genetic Markers</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Helianthus</term>
<term>Plant Diseases</term>
<term>Plant Immunity</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Helianthus</term>
<term>Immunité des plantes</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Helianthus</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Helianthus</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Helianthus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Helianthus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Breeding</term>
<term>Chromosome Mapping</term>
<term>Genetic Linkage</term>
<term>Genome, Plant</term>
<term>Genotype</term>
<term>Phenotype</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartographie chromosomique</term>
<term>Génome végétal</term>
<term>Génotype</term>
<term>Liaison génétique</term>
<term>Locus de caractère quantitatif</term>
<term>Marqueurs génétiques</term>
<term>Phénotype</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Sélection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A high-resolution genetic map of sunflower was constructed by integrating SNP data from three F2 mapping populations (HA 89/RHA 464, B-line/RHA 464, and CR 29/RHA 468). The consensus map spanned a total length of 1443.84 cM, and consisted of 5,019 SNP markers derived from RAD tag sequencing and 118 publicly available SSR markers distributed in 17 linkage groups, corresponding to the haploid chromosome number of sunflower. The maximum interval between markers in the consensus map is 12.37 cM and the average distance is 0.28 cM between adjacent markers. Despite a few short-distance inversions in marker order, the consensus map showed high levels of collinearity among individual maps with an average Spearman's rank correlation coefficient of 0.972 across the genome. The order of the SSR markers on the consensus map was also in agreement with the order of the individual map and with previously published sunflower maps. Three individual and one consensus maps revealed the uneven distribution of markers across the genome. Additionally, we performed fine mapping and marker validation of the rust resistance gene R12, providing closely linked SNP markers for marker-assisted selection of this gene in sunflower breeding programs. This high resolution consensus map will serve as a valuable tool to the sunflower community for studying marker-trait association of important agronomic traits, marker assisted breeding, map-based gene cloning, and comparative mapping. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25014030</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>A high-density SNP Map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12.</ArticleTitle>
<Pagination>
<MedlinePgn>e98628</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0098628</ELocationID>
<Abstract>
<AbstractText>A high-resolution genetic map of sunflower was constructed by integrating SNP data from three F2 mapping populations (HA 89/RHA 464, B-line/RHA 464, and CR 29/RHA 468). The consensus map spanned a total length of 1443.84 cM, and consisted of 5,019 SNP markers derived from RAD tag sequencing and 118 publicly available SSR markers distributed in 17 linkage groups, corresponding to the haploid chromosome number of sunflower. The maximum interval between markers in the consensus map is 12.37 cM and the average distance is 0.28 cM between adjacent markers. Despite a few short-distance inversions in marker order, the consensus map showed high levels of collinearity among individual maps with an average Spearman's rank correlation coefficient of 0.972 across the genome. The order of the SSR markers on the consensus map was also in agreement with the order of the individual map and with previously published sunflower maps. Three individual and one consensus maps revealed the uneven distribution of markers across the genome. Additionally, we performed fine mapping and marker validation of the rust resistance gene R12, providing closely linked SNP markers for marker-assisted selection of this gene in sunflower breeding programs. This high resolution consensus map will serve as a valuable tool to the sunflower community for studying marker-trait association of important agronomic traits, marker assisted breeding, map-based gene cloning, and comparative mapping. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Talukder</LastName>
<ForeName>Zahirul I</ForeName>
<Initials>ZI</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gong</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hulke</LastName>
<ForeName>Brent S</ForeName>
<Initials>BS</Initials>
<AffiliationInfo>
<Affiliation>Northern Crop Science Laboratory, USDA- Agricultural Research Service, Fargo, North Dakota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pegadaraju</LastName>
<ForeName>Venkatramana</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>BioDiagnostics Inc., River Falls, Wisconsin, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Qijian</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Soybean Genomics and Improvement Lab, USDA- Agricultural Research Service, Beltsville, Maryland, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schultz</LastName>
<ForeName>Quentin</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>BioDiagnostics Inc., River Falls, Wisconsin, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qi</LastName>
<ForeName>Lili</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Northern Crop Science Laboratory, USDA- Agricultural Research Service, Fargo, North Dakota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001947" MajorTopicYN="N">Breeding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008040" MajorTopicYN="N">Genetic Linkage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006368" MajorTopicYN="N">Helianthus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="N">Plant Immunity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="Y">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25014030</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0098628</ArticleId>
<ArticleId IdType="pii">PONE-D-13-42811</ArticleId>
<ArticleId IdType="pmc">PMC4094432</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Theor Appl Genet. 1999 Jun;98(8):1279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12238515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 May;149(1):319-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9584106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2011 Feb;101(2):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20879847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:556</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23947483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2012 Dec;125(8):1783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22890805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2012 Jun;125(1):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22350177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29814</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2010 Nov;53(11):939-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21076509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Jul;123(2):351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21479933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Nov;117(7):1021-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18633591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19442273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2001 Apr;44(2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11341731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Apr;5(2):94-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11856602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e28135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2014 Jan;127(1):193-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24193356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 1999 Sep;17(2-3):143-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14538138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Sep;177(1):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Jul;117(2):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18437344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2012 Jul;2(7):721-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22870395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2005 Jul;95(7):834-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Aug;176(4):2589-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Sep;52(362):1857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11520874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Dec;105(8):1124-1136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2012 Sep;125(5):921-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22610307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Apr;122(6):1211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21293840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Aug;123(4):667-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Apr;12(2):211-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19186095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40563</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22802968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 Nov;284(5):319-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20803217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2013 Jan;126(1):93-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22907633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1995 Jun;90(7-8):1079-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24173066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1997 Sep;17(1):21-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9288093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21798064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1997 Feb 20;253(5):535-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9065686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Aug;167(2):623-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2013 Aug;126(8):2039-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23719761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e52777</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Jan;114(2):295-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17119913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e28495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22163026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Aug;109(4):865-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2008 Aug;98(8):926-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 May;173(1):321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e45739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23029214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 May;110(8):1490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15841360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2009 Aug;16(4):213-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19531560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Feb;118(4):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19066841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2012 Oct;125(6):1325-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22772726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2002 Jan-Feb;93(1):77-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2006 Nov;24(11):490-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e47864</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23144832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Sep;119(5):795-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19557383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1995 Jul;91(2):195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24169763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2012 Dec;125(8):1619-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22872151</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Dakota du Nord</li>
<li>Maryland</li>
<li>Wisconsin</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Dakota du Nord">
<name sortKey="Talukder, Zahirul I" sort="Talukder, Zahirul I" uniqKey="Talukder Z" first="Zahirul I" last="Talukder">Zahirul I. Talukder</name>
</region>
<name sortKey="Gong, Li" sort="Gong, Li" uniqKey="Gong L" first="Li" last="Gong">Li Gong</name>
<name sortKey="Hulke, Brent S" sort="Hulke, Brent S" uniqKey="Hulke B" first="Brent S" last="Hulke">Brent S. Hulke</name>
<name sortKey="Pegadaraju, Venkatramana" sort="Pegadaraju, Venkatramana" uniqKey="Pegadaraju V" first="Venkatramana" last="Pegadaraju">Venkatramana Pegadaraju</name>
<name sortKey="Qi, Lili" sort="Qi, Lili" uniqKey="Qi L" first="Lili" last="Qi">Lili Qi</name>
<name sortKey="Schultz, Quentin" sort="Schultz, Quentin" uniqKey="Schultz Q" first="Quentin" last="Schultz">Quentin Schultz</name>
<name sortKey="Song, Qijian" sort="Song, Qijian" uniqKey="Song Q" first="Qijian" last="Song">Qijian Song</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000606 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000606 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25014030
   |texte=   A high-density SNP Map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25014030" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020